

CONGRESSO NAZIONALE SIGG

HOT TOPICS IN CARDIOLOGIA GERIATRICA

Dario Leosco

Dipartimento di Scienze Mediche Traslazionali Università degli Studi di Napoli Federico II

CONGRESSO NAZIONALE SIGG ROMA ²⁸ novembre 2018 Auditorium della Tecnica, Konta

INFLAMMATION AND AGE-RELATED CARDIOVASCULAR DISEASES

Inflammation, age trajectories and age-related diseases

Franceschi C. et al. Nat Rev Endocrinol 2018

Heart failure with preserved ejection fraction Accelerated coronary atherosclerosis Atrial dysfunction and arrhythmias

Epicardial fat: More than just an «EPI» phenomenon

HF nell'anziano:

un quadro clinico sostanzialmente differente

 L'IC negli ultra-80enni colpisce principalmente donne con ipertensione sistolica isolata, funzione cardiaca sistolica conservata e comorbilità extracardiaca

 L'IC negli ultra-80enni è fondamentalmente diversa da quella dei soggetti di media età, nei quali predomina la cardiopatia ischemica, una marcata disfunzione sistolica ed una bassa prevalenza di comorbilità extracardiaca

Percentage of HF pts with preserved and reduced EF by age group

ORIGINAL ARTICLE

Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction

Theophilus E. Owan, M.D., David O. Hodge, M.S., Regina M. Herges, B.S., Steven J. Jacobsen, M.D., Ph.D., Veronique L. Roger, M.D., M.P.H., and Margaret M. Redfield, M.D.

ORIGINAL ARTICLE

Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction

Theophilus E. Owan, M.D., David O. Hodge, M.S., Regina M. Herges, B.S., Steven J. Jacobsen, M.D., Ph.D., Veronique L. Roger, M.D., M.P.H., and Margaret M. Redfield, M.D.

Packer M. JACC 2018

Epicardial adipose tissue is a source of inflammatory mediators in elderly pts with HFpEF

Parisi V et al, Int J Cardiol 2015

Epicardial adipose tissue is a source of catecholamine production and contributes to cardiac denervation in HF

Adrenergic fibers in EAT

EAT endogenous production of catecholamines

Parisi V et al, Circ Res 2016

Increased epicardial adipose tissue thickness correlates with cardiac adrenergic denervation in HF

Parisi V et al, Circ Res 2016

Epicardial adipose tissue and sleep disordered breathing in HF

Parisi V et al. Nutr Metab Cardiovasc Dis 2018

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes (EMPAREG trial)

N Engl J Med 2015

SGLT2 inhibitors may block the deleterious effects of leptin leading to HFpEF

Packer M. Diabetes Obese Metab 2018

Anti-inflammatory effects of dapaglifozion on human epicardial adipose tissue

SGLT2 in EAT

Dapaglifozin/Contol ratio on EAT derived pro-inflammatory cytokines

Diaz-Rodriguez E et al. Cardiovascular Research 2018

Epicardial adipose tissue and CAD

Epicardial adipose tissue and CAD

- In presenza di CAD aumenta l'infiltrazione macrofagica
- Polarizzazzione dei macrofagi M1/M2

Hirata, JACC 2011

EAT is a source of inflammatory mediators in CAD pts

Mazurek T et al. Circulation. 2003

Association of EAT volume with CAD by outcome subgroups

ID	difference (95% CI)	% Weight
Obstructive CAD		
Psaltis, P. J., 2015, Australia	22.80 (13.44, 32.16)	4.46
Cullu, N., 2015, Turkey	21.20 (12.18, 30.22)	4.79
r,ce, G., 2015, Turkey	8.30 (2.65, 13.95)	12.24
Okada, K., 2014, Japan	20.70 (11.78, 29.62)	4.91
Kaya, M., 2014, Turkey	12.50 (5.57, 19.43)	8.13
Kim, S-H., 2014, Korea	23.00 (13.60, 32.40)	4.42
Wang, T. D., 2010, Taiwan	11.00 (4.50, 17.50)	9.24
Bastarrika, G., 2010, Germany	33.70 (22.32, 45.08)	3.01
Konishi, M., 2009, Japan	63.00 (47.44, 78.56)	1.61
Subtotal (I-squared = 86.7%, p = 0.000)	17.32 (14.60, 20.03)	52.80
CAC		
Wang, T. D., 2010, Taiwan	16.00 (4.25, 27.75)	2.83
Sarin, S., 2008, US	21.00 (12.02, 29.98)	4.84
Subtotal (I-squared = 0.0%, p = 0.507)	19.16 (12.02, 26.29)	7.67
MACE		
Possner, M., 2015, Switzerland	19.00 (10.46, 27.54)	5.35
Kia, Y., 2014, China	48.03 (34.50, 61.56)	2.13
Harada, K., 2011, Japan	22.00 (12.81, 31.19)	4.62
Cheng, VY., 2010, US	17.00 (8.92, 25.08)	5.98
Ding, J. Z., 2009, US	21.00 (12.02, 29.98)	4.84
Subtotal (I-squared = 75.3%, p = 0.003)	22.21 (18.08, 26.33)	22.91
schemia		
Hell, M., 2016, US	14.00 (1.08, 26.92)	2.34
Possner, M., 2015, Switzerland	19.00 (10.46, 27.54)	5.35
Vakazato, R., 2011, US	14.00 (6.24, 21.76)	6.48
Janik, M., 2010, US	47.00 (31.73, 62.27)	1.67
Tamarappoo, B., 2010, US	35.30 (13.01, 57.59)	0.79
Subtotal (I-squared = 76.5%, p = 0.002)	19.94 (15.09, 24.78)	16.62

Mancio J et al. Eur Heart J 2018

Echo-EAT thickness predicts CAD over common risk factors

Parisi V et al. Unpublished data

Epicardial Adipose Tissue Removal Arrests Coronary Atherogenesis

Intimal cells proliferation

McKenney-Drake ML et al. Ann Thorac Surg 2017

Type of atrial fibrillation and epicardial fat association

Gaeta M et al. Europace 2017

Epicardial adipose tissue in the pathogenesis of atrial fibrillation

Inflammation and Aortic Stenosis

Epicardial adipose tissue is increased in pts with AS

Parisi V et al, Int J Cardiol 2015

Epicardial adipose tissue shows an exalted inflammatory profile in pts with AS

Parisi V et al, Int J Cardiol 2015

In vivo effects of statin therapy on EAT inflammatory profile

In vitro effects of statin therapy on EAT inflammatory profile

Parisi V. et al. Int J Cardiol 2018

CONCLUSIONS

- The role of cardiac visceral fat in the pathogenesis of age-related cardiovascular diseases represents an hot topic of geriatric cardiology
- Age-related chronic low grade infiammation leads to the accumulation and inflammation of epicardial adipose tissue, which may have important implications for the pathogenesis of HFpEF coronary atherosclerosis, atrial tachyarrythmias, and valvular heart disease
- epicardial adipose tissue may be an important target for therapeutic interventions, since drugs that modify the quantity and biology of epicardial adipose tissue often exert parallel effects to influence the risk of several cardiovascular disorders, including heart failure